Index
A
Abundance based coverage estimator (ACE)290–298, 330, 572, 573
Adaptive Gauss-Hermite quadrature (AGQ)593–595, 608, 647, 659, 660
Additive log-ratio (alr)496–498, 519, 551, 690
adonis()409, 410, 412, 418, 426, 685, 689
adonis2()409–414, 416
aGLMM-MiRKAT676, 677
AICtab ()633, 635
Aitchison simplex491, 493, 496–498, 551
Akaike information criterion (AIC)562, 575, 576, 600–605, 608, 618–620, 633–635, 640, 642–646, 651, 652, 658, 660, 670
ALDEx2491, 498, 500–518, 520, 526, 527, 549, 551
Alpha diversity2, 5, 47, 135, 136, 154, 156, 257, 272, 289–330, 336, 338, 557, 572, 576
Alpha-phylogenetic method326
ampvis2 package293–296, 300, 303, 308, 312, 319, 352–353, 355, 357, 388, 572
Analysis of composition of microbiomes (ANCOM)491, 518–528, 532, 547–549, 551
Analysis of composition of microbiomes-bias correction (ANCOM-BC)491, 518, 528–549, 551
Analysis of similarity (ANOSIM)236, 341, 397–405, 409, 417, 418, 429, 431
ANCOMBC package532–547
Ape11, 29, 48–53, 75, 346, 352, 356
Artifacts2–5, 8, 65, 68, 69, 73, 76–79, 87–90, 92, 100–101, 104, 107, 110, 114, 116, 117, 127, 132, 133, 136–138, 149–151, 153, 154, 156, 230, 233, 323, 371, 382, 429, 465, 492, 520, 522, 523, 580, 689
Autoregressive of order 1[AR(1)]568, 597, 663, 667
Average-linkage clustering162, 174, 177, 196–198, 214, 215, 218, 230, 238, 239, 259
B
Bayesian information criterion (BIC)562, 601, 603, 605, 608, 618, 619, 633–635, 640, 642–646, 651, 652, 658, 660, 670
bbmle package633, 651
Benjamini–Hochberg (BH) procedure503, 511, 531, 540
betadisper()418–420
Beta diversity2, 43, 47, 152, 154, 209, 210, 261, 271, 289, 290, 322, 323, 330, 335–348, 371, 381–384, 388, 397–431, 441, 520, 557, 580
BICtab()633
Biological classifications174–176, 209, 218
BIOM format47, 54–56, 61, 74, 92, 134, 294
Bland-Altman plot508, 509, 514
Bonferroni correction method540
Box plots18–21, 102, 112, 113, 115
Bray-Curtis distance86, 87, 382, 383, 406, 409, 418, 429–430
Bray-Curtis index336–340
Bridge criterion (BC)251, 532, 603–604, 608
C
calcNormFactors()460, 466
Canonical correspondence analysis (CCA)351–353, 355–357, 359, 363, 368, 377–381, 385, 388, 398
Castor11, 48, 52–54, 75
Centered log-ratio (clr)45, 344, 496, 497, 505, 506, 518, 551, 690
Chao 1290–298, 325, 330, 572, 573, 665
Characters12, 15, 16, 27, 49, 52, 53, 67, 69–71, 97, 137, 231, 236, 245–247, 267, 351, 360, 386, 443, 444, 512, 533, 681
Closed-reference clustering149–152, 154–156
Cluster-free filtering (CFF)149–152, 154–157, 161, 254, 259–261, 269, 271, 273
Clustering2, 8, 103, 104, 119, 123, 125, 140, 147–157, 161, 162, 164, 176, 177, 191, 193–200, 202–204, 208–210, 214–218, 228–235, 237–241, 248–255, 257, 258, 260–269, 335, 345, 384–388, 398, 404, 449, 616, 677, 678
Clustering-based OTU methods161, 162, 209–218, 227–250, 252–254, 261, 273
Commonly clustering-based OTU methods161, 177, 192–207, 215, 216, 218, 273
Complete linkage clustering196–198, 200, 214, 229, 230, 259
Compositional data491–500, 505, 548–551, 677, 690, 691
Conway-Maxwell-Poisson distribution621, 623, 630, 646
Correlated sequence Kernel association test (cSKAT)676
Correlation matrix140, 180, 188, 451, 568, 588, 597, 663, 664, 679, 680, 684, 685, 688
Correspondence analysis (CA)351, 355, 366–372, 377, 387
CSV25, 46, 47, 97, 327, 430, 474
cumNormMat()459–460, 466
Cumulative sum scaling (CSS)436, 438, 440, 441, 454, 465–467, 479
curatedMetagenomicData24, 48
D
DADA22, 95, 103–108, 113, 114, 116–119, 124, 125, 128–132, 141, 148, 149, 156, 254, 256–259, 261–266, 268–270, 273, 296, 520
Deblur2, 95, 99, 103, 104, 108, 113–119, 148–150, 254, 256–259, 262, 264–265, 269, 270, 273
Demultiplexed71–73, 78, 95–108, 112–119, 149
Demultiplexed paired-end FASTQ data78, 95–108, 119
Denoising-based methods250, 254, 256–267, 273
De novo clustering153–156, 230, 234, 253
Density plots22
DESeq465, 517
Detrended correspondence analysis (DCA)351, 352, 356, 371–374, 378, 385, 388
Deviance information criterion (DIC)604, 608
devtools package649
DHARMa package640, 670
Difference plot508
Discovery odds ratio testing455, 466
Discriminant analysis193, 194, 203–207, 216–218
dist()401, 419
Distance matrix4, 52, 79, 86–87, 92, 135, 203, 209, 229, 235, 345, 347, 348, 351, 352, 360, 399, 407, 409, 424, 429, 680, 681, 689
Distribution-based clustering (DBC)252–254, 260, 273
download.file()15
E
Ecological similarity236, 240, 260, 261
edgeR465, 488, 517, 518, 548, 549, 616
effectPlotData ()648
Effect size168, 400, 465, 503–512, 516, 547, 606, 607
EM-IWLS algorithm592, 598, 660, 662–664, 670
Emperor plots382–384, 388, 428, 520, 521, 690
Entropy-based methods255
Eukaryote species242, 243
exportMat()461, 467
exportStats()461, 467
EzBioCloud124
F
Factor analysis162, 168, 180, 181, 193, 195, 201, 202, 209, 218, 349, 350
False positive rate (FDR)140, 423, 437, 465, 466, 477, 494, 518, 526, 527, 531, 532, 540, 547–549
FASTA1, 3, 66–69, 71, 92, 128, 129
FASTQ66, 69–73, 78, 92, 95–109, 113–119
FastTree4, 135, 137, 138
Fast zero-inflated negative binomial mixed modeling (FZINBMM)598, 616, 660–669, 671, 675
Feature correlations441, 455–456, 466
Feature table5, 8, 15, 25, 66, 73–76, 78–83, 85–88, 90–92, 95–119, 123, 133, 134, 147, 150, 151, 153, 269, 323, 324, 330, 442, 520–523, 528, 533, 578, 688
Filter41, 58, 79–87, 104, 105, 116, 118, 241, 294, 309, 353, 356, 448, 458, 466, 476, 485, 521, 625, 650, 683
Finite-sample corrected AIC (AICc)601–603, 608, 620
fitZIBB()483, 484, 487
Fixed effect558–563, 568, 571, 573, 575–579, 589, 590, 592, 606, 607, 617, 622, 623, 627, 647, 648, 650, 658–661, 664, 665, 667
Frobenius norm680, 681, 685, 688, 689
F test205, 209, 410, 571, 574, 620
Functional analysis271–273, 567
G
Gauss-Hermite quadrature (GHQ)593, 594, 608, 621
Generalized information criterion (GICλ)604, 608
Generalized linear mixed models (GLMMs)560, 562, 571, 582, 587–608, 615–622, 624–659, 662, 663, 669–671, 675, 676
Generalized linear models (GLMs)440, 471, 482, 515, 528, 562, 563, 587–589, 596, 597, 599, 600, 608, 616, 617, 621, 622, 646, 664
Generalized nonlinear models (GNLMs)587, 588, 608
Generalized UniFrac135, 336, 344, 347
Genome Taxonomy Database (GTDB)128, 130
ggpubr17–23, 313, 314, 316
GLMMadaptive package598, 616, 617, 647–660
GLMM-MiRKAT676, 677
glmmTMB package598, 616, 621–647
glmm.zinb()664, 666
glmPQL()664
Greengenes116, 119, 124, 125, 127–129, 132, 151, 155, 228, 256, 257
H
Heuristic clustering OTU methods229–231, 273
Hierarchical clustering OTU methods229–230
Histogram plots22–23
HITdb130
Holm-Bonferroni531
Homogeneity102, 174, 177, 191, 198, 210, 366, 397, 418–422, 431, 618, 639, 641
Hypothesis tests163, 208, 230, 397, 410, 484, 560–561, 618
I
Information criteria562, 600–605, 608, 618, 646, 670
Inter-quartile log-ratio (iqlr)496, 498, 500, 502, 503, 506, 513, 514, 518, 551
Inverse Simpson diversity303–304
Isometric log-ratio (ilr)496–498, 500, 551, 691
Iterative weighted least squares (IWLS) algorithm591, 592, 596–598, 608, 660, 663
J
Jaccard distance344, 409, 418, 429, 430
Jaccard index322, 336, 339–340
K
Keemei98, 109
Kendall correlation method688
Kenward-Roger (KR) approximation571
KRmodcomp()571
Kruskal-Wallis test318–321, 330, 465, 501, 518, 576
L
Laplace approximation592–595, 598, 608, 621, 660
Large P small N problem349, 675, 692–693
Library sizes437, 460, 461, 466, 481, 492, 493, 497, 501, 528, 529, 533, 549, 564
libSize()460, 466
Likelihood-based methods591, 593–595, 608, 646
Likelihood ratio test (LRT)470, 560–562, 575, 605–608, 619, 651, 670
Linear mixed-effects models (LMMs)551, 561, 565, 577, 581, 582, 587, 589–592, 594, 598, 615, 620, 660, 663–665, 667, 669, 671, 675–677, 692
list.files()96
lme()568, 571, 664–666
lme4 package571, 573, 575, 621, 646
LmerTest package557, 570–576, 582
load()14–15, 356, 572
Log-normal permutation test453–454
Log-ratio transformations344, 491, 496–502, 505, 518, 522, 526, 527, 548, 549, 551, 690
M
Machine learning3, 128, 599–600, 608
MAFFT136
marginal_coefs ()648
Marginalized two-part beta regression (MTPBR)470
Markov Chain Monte Carlo (MCMC)-based integration591, 592, 595, 596, 608
MASS package664
Maximum likelihood (ML)52, 137, 472, 482, 562, 563, 590, 591, 593, 594, 596, 597, 600, 606, 616, 619, 621, 647, 659, 664
metagenomeSeq48, 74, 431, 436, 438, 440–466, 479, 548, 549
Microbiome package11, 34–36, 44, 46, 47, 61, 293, 296–298, 300, 303–305, 307, 312–316, 348, 377, 411, 426–429, 431, 572
Mothur2, 47, 74, 104, 124, 177, 216, 228, 230, 256–258, 263, 265, 294
MRcounts()456, 459–460, 466
MRexperiment Object441, 443–446, 448, 454–459, 461–464, 466
Multi-omics integration271, 273
Multi-omics methods677–678, 693
Multiplexed paired-end FASTQ data95, 108–112, 119
Multivariate analysis207, 244, 342, 347, 350, 351, 371, 384, 397, 398, 404, 405, 409, 417–419, 431, 557, 678, 692, 693
Multivariate distance/Kernel-based longitudinal models676–677, 693
Multivariate longitudinal microbiome analysis675–678
N
National Center for Biotechnology Information (NCBI)124, 125, 130, 139, 256
Natural classification166, 169, 171–172, 175, 212, 215, 218
NBZIMM package616, 664–668
Negative binomial mixed models (NBMMs)596–598, 650, 651, 669
Negative binomial (NB) model616
Newick tree format53
nifHdada2131
nlme package563–569, 582
Non-metric multidimensional scaling (NMDS)202, 203, 351, 352, 355–357, 362–366, 385–388, 399, 678
Nonparametric MANOVA398, 405
Non-parametric microbial interdependence test (NMIT)671, 675, 678–693
Normalization factors438, 439, 444, 445, 447, 460, 466
Normalized counts260, 437–439, 449, 456, 459–461, 466
Numerical integration591–595, 598, 608, 659, 668, 670
Numerical taxonomy140, 161–218, 227–231, 236, 239, 240, 244, 246, 260, 267, 349–351, 360, 385–387
O
Oligotyping254, 255, 260, 269
Open-reference clustering149, 154–157, 161
Operational taxonomic units (OTUs)8, 25–30, 32, 36, 37, 40, 44, 45, 47, 54, 56, 57, 74, 91, 95, 103, 104, 107, 116, 118, 119, 123, 125, 126, 128, 132, 141, 147–157, 161–218, 227–241, 246–273, 291–295, 322, 325, 328, 345, 348, 350–356, 360, 364, 366, 368, 370, 378, 385, 386, 402, 408, 428, 435, 437–440, 442, 444, 447–449, 458, 461–462, 465, 467, 481–485, 487, 489, 493, 494, 500, 501, 506, 508, 511–514, 517–519, 528–530, 535, 548, 549, 564, 677, 681, 682, 684, 692
Ordination47, 154, 162, 176, 193, 194, 202, 209, 210, 216, 217, 335, 336, 339, 345, 349–353, 355, 357–379, 381–388, 397–399, 404–406, 431, 453, 678
Ordination methods177, 195, 202–203, 218, 330, 335, 349–381, 385–388, 398, 404, 677
Over-dispersed211, 387, 549, 597, 598, 602, 615–620, 629, 646, 660, 661, 669, 670
Over-dispersion379, 435, 437, 480–484, 582, 596, 597, 602, 607, 616, 620, 630, 636, 640, 652, 670, 671
P
p.adjust()423, 533
pairwise.perm.manova()423
pbkrtest571
p-corr-method688, 689
Pearson correlation method687
Penalized quasi-likelihood (PQL)592–594, 596, 598, 663
Penalized quasi-likelihood-based methods591–593, 608
Permutational MANOVA (PERMANOVA)341, 345, 397, 400, 405–420, 422–426, 428, 429, 431, 689
Permutation invariance495
Permutation tests208, 210, 398–400, 405, 409, 417, 419, 420, 423, 431, 448, 453–454, 466, 680
Perturbation invariance496
Phenetics162, 164–172, 174–178, 188, 194, 201, 202, 210–213, 215–218, 241, 243, 244, 246, 247, 350, 351, 385, 386
Phenetic taxonomy169–176, 202, 216
Phylogenetic diversity135, 136, 138, 249, 305, 306, 322, 326, 327, 330
Phylogenetic entropy305–307, 330
Phylogenetic quadratic entropy305, 307, 330
Phylogenetics2, 11, 25, 48–54, 61, 125, 136, 139, 140, 162–164, 170, 173–176, 212, 214, 232, 236, 237, 243, 245–249, 251, 261, 267, 290, 305–307, 322, 324, 326, 328, 335, 336, 342–348, 360
Phylogenetic trees4, 7, 8, 25, 29, 36, 41, 42, 48–53, 66, 74–77, 92, 119, 123–141, 234, 290, 305–307, 322, 326, 328, 343, 345, 356, 533
Phyloseq object24–31, 33, 34, 36, 46, 48, 58, 59, 88, 89, 297, 316, 345, 346, 411, 534
Phyloseq package24, 25, 30, 34, 35, 58, 74, 88, 179, 297, 298, 345
Physiological characteristics248–249
Phytools11, 48, 50–52
Pielou’s evenness304–305, 326, 327, 330
pldist344–345
plotQQunif ()637
plotResiduals ()638
Plugins2–5, 8, 65, 80, 83, 85, 86, 95, 99, 103–112, 114–116, 119, 128, 133, 136, 148–150, 153, 155, 261, 322, 381, 428, 520, 692
Poisson168, 211, 260, 262, 437, 501, 528, 588, 589, 593, 676
pr2database131
Presence absence testing454–455, 466
Principal component analysis (PCA)154, 202, 351–360, 363, 364, 367, 368, 370, 375, 378, 385–388, 452, 453, 499, 678, 693
Principal coordinate analysis (PCoA)154, 202, 207, 323, 351, 352, 355–357, 359–364, 382–388, 421, 422, 428, 678, 689, 690
Prokaryote/bacterial species242
pscl package616
Pseudo-likelihood (PL)592, 594
Pyrosequencing flowgrams258–259, 273
Q
q2-composition5, 520
q2-cutadapt5, 110, 111, 148
q2-data22
q2-deblur plugin95, 113–119
q2-feature-classifier5, 126, 128–135, 141
q2-feature-table2, 5, 80, 86
QIIME1–4, 7, 65–67, 92, 100, 104, 124–127, 136, 138, 155, 156, 228, 231, 232, 234, 256, 257, 263, 270, 293, 323
QIIME 21–8, 11, 15, 48, 65–92, 95–101, 103, 104, 106, 108–110, 113–116, 119, 124–128, 132, 133, 136, 137, 141, 147–149, 151, 153, 157, 256, 257, 265, 270, 290, 293, 294, 296, 306, 322–330, 335, 336, 381–384, 388, 397, 428–431, 520–526, 551, 557, 576–582, 675, 687–690, 692, 693
QIIME 2 archives8, 77–79, 92
qiime composition ancom520, 523, 526
qiime longitudinal linear-mixed-effects576–577, 579, 582
qiime longitudinal nmit688
qiime2R package15, 87–90, 92, 296
QIIME 2 view3, 87, 92, 323, 581
Qiime zipped artifacts (.qza)3, 4, 7, 8, 65, 76, 77, 87, 88, 100–101, 110, 119, 132, 151, 296, 324
QQ-plot494, 637, 638, 640, 653–657
q-score114, 116, 149
q-score-joined116, 149
Q-technique167, 180–182
q2-types2, 5
Quality filter114, 116, 132, 149
Quality of the reads112–113
Quasi Akaike Information Criterion and Corrected Quasi-AIC (QAIC and QAICc)602
q2-vsearch5, 115, 148–150, 157
.qza file88
R
Random effect470, 503, 558–564, 574, 575, 577–579, 582, 589–598, 601, 606, 607, 676
Rarefaction108, 154, 323, 328–330, 348, 437, 646
Raw sequence data1–4, 78, 96, 99, 109–110, 119
read.csv()12, 57, 443
read.csv2()12, 443
read.delim()12, 442
readr16–17, 46, 60
readRDS()14
read.table()12, 443
Redundancy analysis (RDA)351–353, 355–357, 359, 363, 374–378, 385, 388
Reference databases123–129, 132, 135, 141, 150–153, 155, 228, 256, 257, 293
Restricted maximum likelihood (REML)563, 574, 606, 619, 621
Ribosomal Database Project (RDP)74, 124, 128, 130, 228–230, 256
R-technique180–182
RVAideMemoire package423–426, 431
S
Sample metadata1, 25, 36, 56, 79, 86, 87, 96–99, 109, 111, 112, 119, 133, 134, 327, 328, 330, 351, 412, 429, 474, 506, 520, 533, 534, 545, 578, 689
Sample size calculation166–168, 218
Satterthwaite approximation571, 573–575, 620
save()13, 14
save.image()14
saveRDS()12–13
Scaling invariance495
SeekDeep254, 255, 259, 263–266, 268, 273
Semantic type4, 8, 68, 69, 73
Semi continuous469, 470, 648
seqkit68, 96
Sequence similarity228, 231, 236, 237, 240, 241, 247, 248, 260, 261, 267, 271, 273
Sequencing error81, 95, 103, 118, 154, 230, 235, 240–241, 251–253, 256, 259, 260, 266, 329, 330
Shannon diversity43, 44, 298–300, 576–581
SILVA124, 127, 130, 151, 228, 257
Similarity coefficients162, 167, 169, 176, 182–194, 196–198, 200, 208–210, 212, 213, 216, 218, 336, 339, 340, 351, 354
Similarity/resemblance matrix193–194
Simpson diversity295, 298, 300–304
Simpson evenness303–304
Single linkage clustering162, 196–197, 200, 214, 215, 234, 238, 252
Single-nucleotide resolution-based OTU methods250–254
Sørensen index336, 340–341
Spearman correlation method140, 494
Species and species-level analysis227, 241–249, 273
16S rRNA method246–249
stats package664
Subcompositional coherence495
Subcompositional dominance496
Sub-OTU methods252, 269–271, 273
Swarm2252–254, 269, 273
T
Taxa5, 25, 84, 119, 134, 236, 342, 472, 494, 566, 650, 677
Taxonomic classification36, 56, 103, 123–125, 132, 133, 135, 141, 212, 213, 236, 267
Taxonomic rank28, 124, 169–170, 213, 218, 231, 236, 535
Taxonomic resemblance161, 178–192, 218
Taxonomic structure162, 164, 168, 176–207, 209, 210, 214, 216, 218, 385, 387
Taxonomy2, 75, 119, 123, 228, 535, 626, 688
Taylor-series linearization591–593, 608
Template model builder (TMB) package621
testDispersion()638
testZeroinflation()638, 640
tidyverse23–24, 58–60
Total sum scaling (TSS)436–438, 465, 466, 479
.tsv file296, 324, 430
Tukey mean-difference plot508
TukeyHSD()418
U
UCLUST155, 228, 231, 232, 238, 253, 265, 269
UNITE124, 127, 128, 151
Univariate analysis557, 678, 692, 693
UNOISE2254, 257, 259, 263–266, 268, 273
UNOISE3256–258, 263–264, 273
Unweighted UniFrac135, 136, 322, 336, 342, 345, 347, 348, 409, 431
Unweighted UniFrac distance343, 344, 348, 384, 409, 429, 430
USEARCH2, 74, 149, 155, 228, 231–234, 257, 264–266, 293
V
vegan package24, 47, 179, 336, 339–342, 348, 352, 356, 401–404, 409–419, 453, 683, 685, 689
vegdist()193, 336, 338–341, 356, 401, 410, 418, 419
Violin plots20–21, 316–318, 330
Visualizations3–5, 7, 8, 17, 56, 61, 87, 101, 105, 106, 108, 109, 112, 119, 133, 134, 322, 323, 349, 353, 354, 381, 382, 428, 441, 449, 521, 579, 581, 679, 689, 692
Volatility analysis579–582
VSEARCH128, 149–151, 153, 157, 234
Vuong test607, 608, 618, 619
W
Wald t test619, 620
Weighted UniFrac135, 258, 322, 336, 343, 345, 347, 409, 429, 431
Weighted UniFrac distance136, 336, 343–345, 347, 429, 431
write.table()12
X
xtable()511
xtable package511
Z
Zero-hurdle607, 616, 619, 624, 635, 643, 646, 659, 669
Zero-hurdle negative binomial (ZHNB)616, 618, 632, 643, 651, 669, 670
Zero-hurdle Poisson (ZHP)616, 618, 619, 632, 635, 643, 651, 658, 659, 670
Zero-inflated211, 387, 436, 439, 440, 470, 479, 480, 548, 592, 598, 607, 616–622, 626, 628–630, 633, 635, 646, 660, 665, 669, 670
Zero-inflated beta467, 469–489
Zero-inflated beta-binomial model (ZIBB)469, 470, 480–489
Zero-inflated beta regression (ZIBSeq)469–480, 489
Zero-inflated beta regression model with random effects (ZIBR)470
Zero-inflated continuous469, 470
Zero-inflated Gaussian (ZIG)435–441, 465–467, 479, 480, 548, 549, 669
Zero-inflated generalized linear mixed models (ZIGLMMs)599, 600, 617
Zero-inflated log-normal (ZILN)435–453, 465–467
Zero-inflated negative binomial (ZINB)479, 480, 488, 616, 618, 622, 630, 631, 641, 645, 648, 650–652, 656–661, 669, 670
Zero-inflated negative binomial mixed models (ZINBMMs)596, 598, 660–664, 668, 670
Zero-inflated Poisson (ZIP)479, 480, 616, 618, 619, 629, 636, 648, 650–652
ZIBBSeqDiscovery483, 484
zicmp630, 633–635, 642, 644, 646